On products of half-plane mappings

dc.contributor.authorChandrasena, S. D.
dc.contributor.authorPerera, A. A. S.
dc.date.accessioned2025-12-07T15:08:32Z
dc.date.available2025-12-07T15:08:32Z
dc.date.issued2014-07-04
dc.description.abstractLet ๐”ป = {๐‘ง โˆˆ โ„‚: |๐‘ง| < 1} and let ๐‘“ and ๐‘” be functions analytic in ๐”ป. Then ๐‘“ is said to be subordinate to ๐‘” if ๐‘“(๐‘ง) = ๐‘”(๐œ‘(๐‘ง)) for ๐‘ง โˆˆ ๐”ป, where ๐œ‘: ๐”ป โŸถ ๐”ป is analytic in ๐”ป with ๐œ‘(0) = 0. This is denoted by ๐‘“ โ‰บ ๐‘”. A trivial modification of the Herglotz representation formula for functions subordinate to half-plane mappings implies that if [symbols] where where |๐‘| = 1, then ๐‘“(๐‘ง)= [symbols] ๐œ‡ is a probability measure on the unit circle ๐œ•๐”ป. In 1989, Koepf considered the class of functions p normalized by ๐‘(0) = 1 and [symbols] for some |๐‘| = 1 and proved that each function of the form [symbols], where |๐‘ฅโ‚–| = |๐‘| = 1, ๐œ†โ‚– > 0 for ๐‘˜ = 1, 2, โ€ฆ , ๐‘› and [symbols] has a representation of the form [symbols] where |๐‘ฅโ‚–| = |๐‘˜| = 1 for ๐œ†โ‚– =, 2, โ€ฆ , ๐‘› and [symbols]. and arg ๐‘ฅโ‚ < arg ๐‘ฆโ‚ < arg ๐‘ฅโ‚‚ < arg ๐‘ฆโ‚‚ < โ‹ฏ < arg ๐‘ฅ๐‘› < arg ๐‘ฆ๐‘› < arg ๐‘ฅโ‚ + 2๐œ‹. (โˆ—โˆ—) In this study we first give a new proof of the above product representation using the following known representation for finite Blaschke products: If ๐ต is a finite Blaschke product with ๐ต(0) = 0, then [symbols] where |๐‘ฅโ‚–| = 1, ๐œ†โ‚– > 0 for ๐‘˜ = 1, 2, โ€ฆ , ๐‘› and [symbols]. We then considered the question of whether each function of the form (โˆ—โˆ—) has a representation of the form (โˆ—). We were able to prove it for ๐‘› = 2 directly. Since the computation becomes tedious for ๐‘› = 3 with the direct method, we employed the Herglotz representation formula to prove it. Based on the above results and verification for some more cases using Mathematica, we conjecture that each function of the form ๐‘๐‘›(๐‘ง) = [symbols], where |๐‘ฅโ‚–| = |๐‘ฆโ‚–| = 1 for ๐‘˜ = 1, 2, โ€ฆ , ๐‘› and arg ๐‘ฅโ‚ < arg ๐‘ฆโ‚ < arg ๐‘ฅโ‚‚ < arg ๐‘ฆโ‚‚ < โ‹ฏ < arg ๐‘ฅ๐‘› < arg ๐‘ฆ๐‘› < arg ๐‘ฅโ‚ + 2๐œ‹ has a representation of the form ๐‘๐‘›(๐‘ง) [symbols] where |๐‘ฅโ‚–| = |๐‘| = 1, ๐œ†โ‚– > 0 for ๐‘˜ = 1, 2, โ€ฆ , ๐‘› and [symbols].
dc.identifier.citationProceedings of the Peradeniya University International Research Sessions (iPURSE) - 2014, University of peradeniya, P 399
dc.identifier.isbn978 955 589 180 6
dc.identifier.issn13914111
dc.identifier.urihttps://ir.lib.pdn.ac.lk/handle/20.500.14444/7090
dc.language.isoen
dc.publisherUniversity of Peradeniya , Sri Lanka
dc.relation.ispartofseriesVol. 18
dc.subjectSubordination
dc.subjectHalf-Plane Mappings
dc.subjectHerglotz Representation
dc.subjectBlaschke Products
dc.subjectAnalytic Functions
dc.titleOn products of half-plane mappings
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
399.pdf
Size:
703.02 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections