Polynomials defining distinguished varieties in a generalised version of symmetrised bidisc

dc.contributor.authorJayasingha, J.A.T.D.
dc.contributor.authorWijesooriya, U.D.
dc.date.accessioned2025-11-06T09:09:21Z
dc.date.available2025-11-06T09:09:21Z
dc.date.issued2025-11-07
dc.description.abstractIn this study, we explored the characterisation of algebraic curves known as distinguished varieties that exhibit special boundary behavior of exiting the symmetrised bidisc exclusively through its distinguished boundary. Let ๐”ป be the open unit disc, ๐•‹ be the unit circle, and ๐”ผ be the โ„‚\๐”ป in โ„‚. Let ๐”ป2 = ๐”ป ร—๐”ป be the unit bidisc in โ„‚2. For a polynomial ๐‘(๐‘ง,๐‘ค) โˆˆ โ„‚[๐‘ง,๐‘ค] such that its zero set ๐‘(๐‘) โІ ๐”ป2 โˆช๐•‹2 โˆช๐”ผ2, ๐‘(๐‘)โˆฉ๐”ป2 is a distinguished variety in ๐”ป2. Let the symmetrisation map ๐œ‹:โ„‚2 โ†’ โ„‚2 be defined by ๐œ‹(๐‘ง,๐‘ค) = (๐‘ง +๐‘ค,๐‘ง๐‘ค), and define the symmetrised bidisc ๐”พ = ๐œ‹(๐”ป2), the distinguished boundary of ๐”พ be ๐‘ฮ“ = ๐œ‹(๐•‹2), and the exterior of ๐”พ be ฮฉ = ๐œ‹(๐”ผ2). For a polynomial ๐‘ž(๐‘ ,๐‘) โˆˆ โ„‚[๐‘ ,๐‘] such that its zero set ๐‘(๐‘ž) โІ ๐”พ โˆช ๐‘ฮ“ โˆชฮฉ, the set ๐‘(๐‘ž) โˆฉ๐”พ is a distinguished variety in ๐”พ. It is proven that ๐‘Š โŠ‚ ๐”พ is a distinguished variety in ๐”พ if and only if there exists a distinguished variety ๐‘‰ in ๐”ป2 such that ๐‘Š = ๐œ‹(๐‘‰). In this study, we partially generalised this result by considering a generalised version of symmetrised bidisc. Considering the map ๐œ‹ฬƒ: โ„‚2 โ†’ โ„‚2 given by ๐œ‹ฬƒ(๐‘ง,๐‘ค) = (๐‘ง + ๐‘ค,๐‘ง2 + ๐‘ค2), let ๐”พ ฬƒ = ๐œ‹ฬƒ(๐”ป2). By defining a distinguished variety in ๐”พ ฬƒ in a similar fashion, we proved that ๐‘Š distinguished variety in ๐”พ that ๐‘Š ฬƒ โŠ‚๐”พ ฬƒ is a ฬƒ if and only if there exists a distinguished variety ๐‘‰ in ๐”ป2 such ฬƒ =๐œ‹ฬƒ(๐‘‰).
dc.identifier.citationProceedings of the Postgraduate Institute of Science Research Congress (RESCON)-2025, University of Peradeniya P-63
dc.identifier.issnISSN3051-4622
dc.identifier.urihttps://ir.lib.pdn.ac.lk/handle/20.500.14444/6130
dc.language.isoen
dc.publisherPostgraduate Institute of science (PGIS), University of Peradeniya, Sri Lanka
dc.relation.ispartofseriesVolume 12
dc.subjectDistinguished variety
dc.subjectInner toral polynomials
dc.subjectSymmetrisation map
dc.subjectSymmetrised bidisc
dc.titlePolynomials defining distinguished varieties in a generalised version of symmetrised bidisc
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
18 RESCON 2025 CMS-15.pdf
Size:
358.85 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections