Improvement of ridge estimator when stochastic restrictions are available in the linear regression model

dc.contributor.authorArumairajan, Sivarajah
dc.contributor.authorWijekoon, Pushpakanthi
dc.date.accessioned2024-12-06T05:51:03Z
dc.date.available2024-12-06T05:51:03Z
dc.date.issued2014
dc.description.abstractIn this paper we propose another ridge type estimator, namely Stochastic Restricted Ordinary Ridge Estimator (SRORE) in the multiple linear regression model when the stochastic restrictions are available in addition to the sample information and when the explanatory variables are multicollinear. Necessary and sufficient conditions for the superiority of the Stochastic Restricted Ordinary Ridge Estimator over the Mixed Estimator (ME), Ridge Estimator (RE) and Stochastic Mixed Ridge Estimator (SMRE) are obtained by using the Mean Square Error Matrix (MSEM) criterion. Finally the theoretical findings of the proposed estimator are illustrated by using a numerical example and a Monte Carlo simulation.
dc.identifier.citationJournal of Statistical and Econometric Methods Vol. 3 No. 1 2014 pp. 35-48
dc.identifier.urihttps://ir.lib.pdn.ac.lk/handle/20.500.14444/4719
dc.language.isoen_US
dc.publisherUniversity of Peradeniya
dc.relation.ispartofseries3; 1
dc.subjectStatistics
dc.subjectMulticollinearity
dc.subjectMixed estimator
dc.subjectRidge Estimator
dc.subjectStochastic Restricted Ordinary Ridge Estimator
dc.subjectMean Square Error Matrix
dc.titleImprovement of ridge estimator when stochastic restrictions are available in the linear regression model
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Shiwara & wijekoon.pdf
Size:
285.65 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: