Polynomials defining distinguished varieties in a generalised version of symmetrised bidisc

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

Postgraduate Institute of science (PGIS), University of Peradeniya, Sri Lanka

Abstract

In this study, we explored the characterisation of algebraic curves known as distinguished varieties that exhibit special boundary behavior of exiting the symmetrised bidisc exclusively through its distinguished boundary. Let ๐”ป be the open unit disc, ๐•‹ be the unit circle, and ๐”ผ be the โ„‚\๐”ป in โ„‚. Let ๐”ป2 = ๐”ป ร—๐”ป be the unit bidisc in โ„‚2. For a polynomial ๐‘(๐‘ง,๐‘ค) โˆˆ โ„‚[๐‘ง,๐‘ค] such that its zero set ๐‘(๐‘) โІ ๐”ป2 โˆช๐•‹2 โˆช๐”ผ2, ๐‘(๐‘)โˆฉ๐”ป2 is a distinguished variety in ๐”ป2. Let the symmetrisation map ๐œ‹:โ„‚2 โ†’ โ„‚2 be defined by ๐œ‹(๐‘ง,๐‘ค) = (๐‘ง +๐‘ค,๐‘ง๐‘ค), and define the symmetrised bidisc ๐”พ = ๐œ‹(๐”ป2), the distinguished boundary of ๐”พ be ๐‘ฮ“ = ๐œ‹(๐•‹2), and the exterior of ๐”พ be ฮฉ = ๐œ‹(๐”ผ2). For a polynomial ๐‘ž(๐‘ ,๐‘) โˆˆ โ„‚[๐‘ ,๐‘] such that its zero set ๐‘(๐‘ž) โІ ๐”พ โˆช ๐‘ฮ“ โˆชฮฉ, the set ๐‘(๐‘ž) โˆฉ๐”พ is a distinguished variety in ๐”พ. It is proven that ๐‘Š โŠ‚ ๐”พ is a distinguished variety in ๐”พ if and only if there exists a distinguished variety ๐‘‰ in ๐”ป2 such that ๐‘Š = ๐œ‹(๐‘‰). In this study, we partially generalised this result by considering a generalised version of symmetrised bidisc. Considering the map ๐œ‹ฬƒ: โ„‚2 โ†’ โ„‚2 given by ๐œ‹ฬƒ(๐‘ง,๐‘ค) = (๐‘ง + ๐‘ค,๐‘ง2 + ๐‘ค2), let ๐”พ ฬƒ = ๐œ‹ฬƒ(๐”ป2). By defining a distinguished variety in ๐”พ ฬƒ in a similar fashion, we proved that ๐‘Š distinguished variety in ๐”พ that ๐‘Š ฬƒ โŠ‚๐”พ ฬƒ is a ฬƒ if and only if there exists a distinguished variety ๐‘‰ in ๐”ป2 such ฬƒ =๐œ‹ฬƒ(๐‘‰).

Description

Citation

Proceedings of the Postgraduate Institute of Science Research Congress (RESCON)-2025, University of Peradeniya P-63

Collections